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ABSTRACT 
 
Simulation-Based Early Warning Systems provide op-

portunities to control and analyze material flow systems 

by forecasting future system states. For this purpose a 

flexible reporting and extracting of simulation results 

respectively is essential but not supported by simulation 

tools in a standardized and simulator-independent way. 

There is a variety of general communication methods to 

exchange results with non-simulation applications (e.g. 

Simulation-Based Early Warning Systems). Neverthe-

less the data structure and representation have to be 

described for every isolated case. 

This article presents a solution approach to enable flexi-

ble generation of reports via XML and XSLT. For this 

reason an XML schema definition used for defining 

variable calculation rules is described and its implemen-

tation in representative simulation tools is pointed up as 

well as the link to simulation-based early warning sys-

tems. 

 

INTRODUCTION 
 
Different customer requirements, the rapid change of 

available technologies and the bigger flexibility of pro-

duction factors in the automotive industry lead to in-

creasing competition and complexity in process and 

product innovation. Appropriate methods to cope with 

these challenges are efficient production strategies. 

In this context, time is a very important factor. The 

sooner future developments are identified, the faster one 

can respond to them. Simulation-Based Early Warning 

Systems (SEWS) support a proactive control of real 

material flow systems. In consequence of real or poten-

tial state changes, proactive control (unlike reactive 

control) makes foresighted and target-oriented acting 

possible. 

The usage of simulation as a part of an early warning 

system to control real material flow systems makes 

great demands on simulation models and the system 

environment. One requirement is that a potential user of  

SEWS does not have to parameterize, start and analyze 

simulation runs. For this reason the simulation model 

has to be embedded invisibly into a SEWS and special 

programming constructs are required that allow simula-

tion models to be integrated in a production control or 

operating system (Banks 2000). 

The main objective of this approach is to support SEWS 

with efficient functions to generate reports flexibly and 

independently of the used simulator. The following 

section will give a short description of SEWS and their 

architecture. After that the flexible generation of reports 

via variable definition will be discussed. The last sec-

tion explains how simulation models can work with it. 

Finally the paper gives a conclusion and an outlook on 

future work. 

 

SIMULATION-BASED EARLY WARNING 

SYSTEMS 
 
The basic concept of SEWS is not new but not de-

scribed conclusively in literature and consistently im-

plemented in practice. One of the commonly used terms 

in this context is online-simulation, which is part of 

SEWS to forecast future system states. Generally 

online-simulation is the simulation of an existing real 

system based on a simulation model of this system. The 

simulation model has to be initialized with real data of 

the current system state. Results have to be calculated in 

an adequately short time (Schulze et al. 2003). There are 

a lot of terms and definitions which are related directly 

and indirectly with SEWS but it is possible to differen-

tiate them (Hotz and Schulze 2006). The following 

section defines and explains the term of SEWS and 

introduces the system architecture. 

 

Making SEWS Understandable 
 
Generally early-warning systems are mechanisms de-

ployed to inform persons at risk of imminent danger at 

an early stage. The purpose is to enable the user or the 

deployer of the early-warning system to prepare for the 

danger and act accordingly to mitigate against or avoid 

it (Greulich and Barnert 2003). 

Simulation models are used to predict the behaviour of 

real and complex systems which are stochastically in-

fluenced. Typically simulation models help to analyze 

the effects of different action alternatives without im-

plementation and negative effects for the real system. 

SEWS combine the functionalities of simulation and 

early-warning systems. The simulation-based forecast-

ing of future system states is the significant difference 

to classic early-warning systems which are based exclu-

sively on historical and current measuring data. 



Recapitulating the following definition of SEWS may 

be useful: 

“A Simulation-Based Early Warning System is a 

mechanism which is based on a simulation model of a 

complex real system and points negative effects or posi-

tive potentials out as soon as possible and informs the 

user of the complete system conveniently by forecasting 

and analyzing different action alternatives.” 

The potential users of SEWS are the responsible people 

who are commissioned to control the real system. In 

practice the acceptance of SEWS is affected by the 

capability of detecting exceptional circumstances, the 

generation of reasonable action alternatives and the 

flexible representation of important variables from 

simulation results. 

 

System Architecture of SEWS 
 
In principle the architecture of SEWS includes five 

primary components (Hotz and Schulze 2006): 
 
• Datasources: 

 
Relevant system data has to be collected from dif-

ferent data sources. These could be databases of op-

erating systems, production control centers or dif-

ferent production planning systems like enterprise 

resource planning or other planning and documenta-

tion databases. Maintenance data and data of finan-

cial controlling systems are also important. Specific 

scenarios necessitate collecting data from computer 

numeric controls, storage programmable logic con-

trollers for conveyors or machines and OPC-server 

directly. There are a lot of approaches to connect 

data from real production facilities with simulation 

models (Feldmann 2000) and represent simulation 

relevant data in XML (Jensen and Reinhardt 2003). 
 

• Framework: 
 
The main functions of the primary component 

Framework are data handling, the initialization and 

control of simulation models, the gathering and 

evaluation of simulation results. Furthermore it has 

to support an efficient communication with a 

SEWS-user and to generate appropriate action al-

ternatives in the case of exceptions in the material 

flow system e.g. machine failures or material tail-

backs. 
 

• Simulation Model(s): 
 

The ability to forecast and proactive control is pro-

vided by simulation models of the real system. A 

SEWS should be independent of specific simulation 

models or simulators. Some simulators are more 

capable because of their performance, their com-

munication abilities and their extensibility, others 

are not.  
 
• User and user interface respectively: 
 

The control center user is of utmost importance. He 

is supplier of data as well as beneficiary of the sys-

tem. Via a user interface he is able to configure the 

different functionalities of the framework depend-

ing on the real system. 

 

• Global XML-Structure  and Web Services: 
 

At the evolution of SEWS attention has to be paid 

to standardization, extensibility and reusability of 

the whole system and its components. XML is a 

standardized data exchange format and satisfies 

these requirements regarding extensibility and stan-

dardization. Web Services guarantee the reusability 

of commonly used functions which can be used by 

more then one SEWS. A Web Service is a service 

whose functionalities are described in XML and 

can be called over the internet and intranet respec-

tively (Graham et al. 2002). 
 
Figure 1 displays the system architecture of SEWS. 

 

 
 

Figure 1: System Architecture of SEWS. 

 

The following section describes the flexible report gen-

eration via variable definition. 

 

FLEXIBLE REPORT GENERATION VIA 

VARIABLE DEFINITION 
 
Using a variety of simulation tools causes the necessity 

of result format standardization. There are a lot of pos-

sible forms and methods to generate reports and results 

from simulation runs. If we want to apply a SEWS in-

dependently of the used simulator the report generation, 

the representation and the evaluation of simulation re-

sults have to be standardized.  

Defining and parametrizing variables via XML are the 

method of solution in this article. XML can be used in 

different technologies and can be represented in a vari-

ety of display formats. For this reason it is necessary to 

describe the processing of XML documents, because a 

variety of illustration facilities for XML data is avail-

able e.g. web pages. 

The variables are freely configurable by the control 

center user of a SEWS. He can flexibly define his own 

reporting as requested and thus independence can be 

achieved. The simulator and simulation model respec-

tively can process the calculation rules of these vari-



ables and return the results after or during a simulation 

run. 

First of all the following subsection illustrates the tech-

nology XML. Subsequently the definition of variables 

via XML and the generation of source code using XSLT 

will be described. 

 

The World is Speaking XML 
 
Recommended by the W3C (W3C 2006) the eXtensible 

Markup Language (XML) is a general-purpose markup 

language for creating special-purpose markup lan-

guages, capable of describing many different kinds of 

data. Derived from the Standard Generalized Markup 

Language (SGML), XML plays an important role in 

facilitating the sharing of data across different systems, 

especially systems connected via the Web.  

Markup languages based on XML like MathML 

(MathML 2006), XHTML and XSLT are defined in a 

formal way and allow programs to modify and validate 

documents without prior knowledge of their form. Fol-

lowing points make XML well-suited for data exchange 

(McLaughlin 2002, Skulschus 2004, Bates 2003): 
 
• Simultaneously human- and machine-readable. The 

support of unicode allows the communication of 

almost any information in any human language and 

it manifests as plain text files, independently of li-

censes or restrictions. 
 
• The most general computer science data structures 

can be represented (records, lists and trees). 
 
• A strict syntax and parsing requirements allow the 

parsing algorithms to remain simple, efficient and 

consistent. 
 
• The self-documenting format describes structure 

and field names as well as specific values. A hier-

archical structure suits to most types of documents. 
 
• The robust, logically-verifiable format is based on 

international standards. 
 
• Platform-independent and relatively immune to 

changes in technology. 
 
• Extensive experience and software availability 

because XML and its predecessor SGML have been 

in use since 1986. 
 
An XML document has to be well-formed and valid. 

Valid XML documents contain data that conforms to an 

XML schema that describes correct data values and 

locations. Schema definition formats for XML are the 

Document Type Definition (DTD) and the XML Schema 

Definition (XSD). XSD is the more powerful successor 

of DTD in describing XML languages because of its 

rich data typing system that allows more detailed con-

straints on an XML document’s logical structure. Fur-

thermore XSD is based on XML format and can be 

processed by ordinary XML tools.  

Widely used Application Programming Interfaces 

(APIs) for processing XML data are the Document Ob-

ject Model API (DOM) for random-access processing 

and the Simple API for XML (SAX) for serial process-

ing. Data binding is another possibility of processing 

XML data and makes them available for programming 

language data structure. An example for data binding 

systems is the Java Architecture for XML Binding 

(JAXB). 

There exist a lot of approaches to make the advantages 

of XML useful for simulation. One approach is to ex-

ploit the features of XML for modelling and simulation 

systems. Classes are generated which can be integrated 

in the target simulation system and support the user in 

constructing and editing models (Röhl and Uhrmacher 

2005). Another related approach is to use XML-based 

code generators for converting simulation models be-

tween different run-time platforms without manual 

changes (Wiedemann 2005).  

Usually XML is used for describing and exchanging 

data between different systems. Concerning a specific 

simulation problem, the relevant data are collected and 

represented in XML, so all applications involved in 

solving this problem work on the same data structure. 

Lee and Luo use XML to represent a machine shop data 

model and describe a mechanism for transferring data 

between a traditional database and XML files (Lee and 

Luo 2005). Further there are ambitions to describe 

simulation models formally in a universally valid way 

(Reinhardt et al. 2003).  

The problem of any approaches is that there is no avail-

able standard XML schema definition for simulation 

models and it is utopian that this problem can be solved 

in the near future. The reason is complexity in simula-

tion which makes it necessary to have simulation ex-

perts who are able to abstract problems from reality. To 

find a matching XML schema definition that supports 

every possible simulation problem under the restriction 

of necessary abstraction would be the solution of strik-

ing simplicity.  

For this reason a global XML schema definition for 

SEWS is not designed to describe simulation models 

completely. It simply has to support the data manage-

ment. The XML schema for describing variables which 

is defined in the following is only a fragment of the 

global XML schema definition for SEWS. 

 

Defining Variables with XML 
 
The precondition of flexible generation of reports is the 

presentability of variables. Simulation entities (e.g. 

loads, resources, workers, order lists, etc. …) own a lot 

of attributes depending on the used simulation tool. A 

flexible and open structure to describe different variable 

definitions and constellations is needed. Furthermore 

variables calculability consisting of several different 

parameters has to be supported.  

An appropriate XML schema definition makes this 

approach possible. A variable is defined by recursive 

use of the XML node operand. An operand represents 

either an element or further operations. At this point the 

recursivity starts because an operation consists of two 

operands and one operator. An element includes the 



following information about the related simulation en-

tity (generally an entity is a representation of real things, 

Chen 1976): 
 
• ElementType: Defines the type of simulation entity. 

Element Types are resources (e.g. machines), 

workers, loads, queues or order lists. 

• ElementID: Represents the explicit identification of 

a specific simulation entity. 

• AttributeID: Specifies the desired attribute. Its 

value has to be used for calculation. 

 
Figure 2: XML Schema Definition for Variables. 

 

A variable calculation rule can be represented by a di-

rected root tree (Neumann and Morlock 2002). Oper-

ands which contain an element are the leaves of this 

tree. 

To clarify this coherences a simple example should be 

given. Let a, b, c and d be elements used to calculate the 

variable x as follows: 
 

)()( dcbax −∗+= . 
 

This calculation can be displayed in a directed root tree 

(Figure 3). 

Furthermore an element can contain an absolute term or 

whole calculation rules of other variables. For this rea-

son very complex calculation rules are within the scope 

of possibility. 

 

 
 

Figure 3: Root Tree of Variable x. 

 

Defining variables in this way is not completely new. 

The Mathematical Markup Language (MathML) pro-

vides a similar systematic for representing mathematical 

expressions, symbols and formulae with the aim to 

integrate them into HTML documents. It deals with the 

presentation as well as information about the meaning 

of formula components.  

At this point we have reached the first step of flexible 

generation of reports. We are able to define complex 

calculation rules of variables. Figure 4 illustrates an 

example XML document with two variables (mill-

ing_output_1 and worker_idle_state_1) based on the 

following calculation rules: 
 
milling_output_1 = 

  RESOURCE�MILLING_MACHINE_1�OUTPUT + 

  RESOURCE�MILLING_MACHINE_2�OUTPUT 
 
worker_idle_state_1 =  

  WORKER�MILLING_WORKER_1�AVG_IDLE + 

  WORKER�MILLING_WORKER_2�AVG_IDLE 

 

 
 

Figure 4: Example XML Document of Variables. 

 

These variables are based on known attributes of simu-

lation entities and can be built e.g. with the aid of web 

pages (Figure 5). Now these rules have to be made 

available for the simulation model. 

 

 
 
Figure 5: Defining Calculation Rules via Web Pages. 

 
The idea to solve this problem is either to generate 

source code which is useable by the simulation model 

directly or to generate data files which can be read from 

the simulator and simulation models respectively. The 

<Variables> 
 <Variable> 
  <Operand operand_id="operand_1"> 
   <Operation> 
    <Operator>plus</Operator> 
    <Operand operand_id="operand_1_1"> 
     <Element  attributeID="OUTPUT"  
       elementID="MILLING_MACHINE_1"  
       elementType="RESOURCE"/> 
    </Operand> 
    <Operand operand_id="operand_1_2"> 
     <Element  attributeID="OUTPUT"  
       elementID="MILLING_MACHINE_2"  
       elementType="RESOURCE"/> 
    </Operand> 
   </Operation> 
  </Operand> 
  <Description>utilization of milling machines</Description> 
  <VariableID>milling_output_1</VariableID> 
 </Variable> 
 <Variable> 
  <Operand operand_id="operand_2"> 
   <Operation> 
    <Operator>+</Operator> 
    <Operand operand_id="operand_2_1"> 
     <Element  attributeID="AVG_IDLE"  
       elementID="MILLING_WORKER_1"  
       elementType="WORKER"/> 
    </Operand> 
    <Operand operand_id="operand_2_2"> 
     <Element  attributeID="AVG_IDLE"  
       elementID="MILLING_WORKER_2"  
       elementType="WORKER"/> 
    </Operand> 
   </Operation> 
  </Operand> 
  <Description>average idle state of workers</Description> 
  <VariableID>worker_idle_state_1</VariableID> 
 </Variable> 
</Variables> 

 



best fitting alternative is depending on the used simula-

tion tool. Anyway at this time XSLT comes into play. 

 

Code Generation with XSLT 
 
The eXtensible Stylesheet Language (XSL) describes 

how XML encoded files have to be formatted or trans-

formed. XSL is used in three W3C-recommended lan-

guage specifications (W3C 2006). These languages are 

XSL Transformations (XSLT), XSL Formatting Objects 

(XSL-FO) and XML Path Language (XPath). 

XPath is used to address the parts of an XML document 

whereas XSL-FO specifies the visual formatting of 

XML documents. 

Related to this papers topic the interesting specification 

is XSLT. It supports the transformation of XML docu-

ments into other document formats like HTML, RTF, 

TeX, plain text or even back into XML with new or 

changed values and attributes. 

For the transformation two things are necessary. An 

XSL document describes the transformation output and 

an XSLT processor is doing the actual transformation. 

There are different XSLT processor distributions avail-

able. The very most common distribution is Xalan-Java 

and can be used from the command line, in an applet, a 

servlet or as a module in other programs. 

Depending on the used simulator, XML documents can 

be transformed into different formats via XSLT 

stylesheets (Figure 6).  

 

 
Figure 6: XSLT Transformation (Burke 2001). 

 

Afterwards the simulator and simulation model respec-

tively uses this data. At the end of simulation runs or at 

specific points of time the variables have to be calcu-

lated and returned. The processing of calculation rules is 

discussed in the following section. 

The attributes of the XML node element is defined in a 

common way independently of the used simulator. It 

has to be translated into simulator specific attributes. 

XSLT stylesheets consist of template rules. During the 

XSLT processing the XML documents are processed 

according to a fixed algorithm to find XML elements 

and nodes respectively that meet certain conditions of 

template rules. Inside the template rules, instructions are 

processed like sequential instructions, which define the 

result document. 

Then the generally defined attributes can be interpreted 

depending on the target simulator. Figure 7 demon-

strates the stylesheet code for interpreting the element 

attributes of the example XML document in Figure 4 for 

the use in the Simulator “AutoMod”. 

The first template is invoked for every element-node in 

the XML document. The XML attributes related to this 

node (AttributeID and ElementType) are passed to a 

second template which is able to interpret the element 

type (in the example stylesheet: resource and worker). 

Depending on this element type a third template returns 

the simulator-specific attributes in cleartext. 

 

 
 

Figure 7: Stylesheet for interpreting element attributes. 

 
The following section describes the generated code and 

how it can be used by the simulation models and how 

the calculation rules are processed. 

 

MAKE SIMULATION MODELS WORKING 

WITH IT 
 
The objective target is to enable simulation models to 

calculate desired variables for a flexible reporting. At 

the moment one can produce useful output with the aid 

of XSLT and XML documents. Thus the next sections 

will describe how simulation models can be provided 

with this output, how simulation models process this 

data and how results can be calculated and returned. 

First the communication method will be discussed. 

Afterwards the initialization of calculation rules in 

simulation models will be described. The explanation of 

the actual calculation of results and their representation 

will complete this section. 

 

Simulation Model Communication 
 
The described approaches in the preceding sections are 

tested with the simulation tools AutoMod and SLX. 

AutoMod is a discret event-oriented simulator which is 

used in the area of material flow and logistics simula-

tion. The modelling can be done in a graphical user 

interface. Complex control routines and workflows are 

developable using a specific simulation language.  

<xsl:template match="Element" mode="auto_mod_attribute"> 
 <xsl:call-template name="auto_mod_attribute"> 
  <xsl:with-param name="attribute_id" select="@attributeID"/> 
  <xsl:with-param name="element_type" select="@elementType"/> 
 </xsl:call-template> 
</xsl:template> 
  
<xsl:template name="auto_mod_attribute"> 
 <xsl:param name="attribute_id"/> 
 <xsl:param name="element_type"/> 
 <xsl:if test="$element_type='RESOURCE'"> 
  <xsl:call-template name="amod_resource_attributes"> 
   <xsl:with-param name="attribute_id" select="$attribute_id"/> 
  </xsl:call-template>  
 </xsl:if> 
 <xsl:if test="$element_type='WORKER'"> 
  <xsl:call-template name="amod_worker_attributes"> 
   <xsl:with-param name="attribute_id" select="$attribute_id"/> 
  </xsl:call-template>  
 </xsl:if> 
 
 … 
 
</xsl:template> 
  
<xsl:template name="amod_resource_attributes"> 
 <xsl:param name="attribute_id"/> 
 <xsl:if test="$attribute_id='OUTPUT'"> 
  <xsl:text>total loads</xsl:text> 
 </xsl:if> 
 <xsl:if test="$attribute_id='AVG_OUTPUT'"> 
  <xsl:text>average loads</xsl:text> 
 </xsl:if> 
 <xsl:if test="$attribute_id='DOWN_TIME'"> 
  <xsl:text>average down time</xsl:text> 
 </xsl:if> 
 
 … 
 
</xsl:template> 



This simulator provides the opportunity to communicate 

with other systems based on integrated interfaces (e.g. 

ActiveX, OLE, Client/Server) and to read data from 

files. Furthermore different graphical import formats 

like IGES, VRML and DXF are supported (Chung 

2003). 

The Simulation Language with eXtensibilities (SLX) 

consists of two components. On the one hand the SLX-

Language which includes instructions to simulate dis-

crete processes as well as general instructions like 

higher programming languages. On the other hand it 

contains general components to develop simulation 

systems. SLX is based on a C-like kernel which is aug-

mented with basic functions for event-oriented discrete 

simulation which leads to the actual SLX kernel 

(Schulze and Henriksen 1998). For this reason almost 

all functionality of higher programming languages with 

their communication possibilities are available. 

There are a variety of potential communication methods 

for generated source code. Usually company networks 

provide slow transfer rates and should not burden with 

network traffic unnecessarily. For this reason network 

traffic has to be hold minimal. 

Making importable data files available to simulation 

models reduces communication costs to the required 

amount of data. This data files can be stored on the 

same computer the simulation model is running on. 

These files will be read or included at the beginning of 

simulation runs. 

AutoMod simulation models as well as SLX simulation 

models have to be compiled. Compared to SLX the 

compilation process for bigger models developed in 

AutoMod is in the range of minutes. Thus data for simu-

lation models are provided as readable data files. A 

model compilation is not necessary. Even the compila-

tion of big SLX simulation models requires less then a 

minute. For this reason SLX code can be generated on 

the fly and imported as SLX classes. The code genera-

tion is one task of the SEWS framework which controls 

the data transfer and the simulation models. Figure 8 

displays the flow of actions. 

 

 
 

Figure 8: Code Generation depends on the Simulator. 

 

To secure the existence of elements and their attributes, 

a validity check of calculation rules is inevitable in all 

cases. 

The next question is how the application of calculation 

rules in AutoMod and SLX can be done. This will be 

discussed in the following section. 

 

 

Initialization of Calculation Rules 
 
The simulator and the simulation model respectively 

have to generate the desired variables at the end of 

simulation runs or at specific points of time. Prior to this 

the calculation rules have to be known. The generated 

code or data files may be used for the initialization of 

simulation models. 

For the use in SLX there have to be defined classes 

which represent the structure of calculation rules ana-

logical to the XML schema definition document. This 

structure can be allocated with data at the initialization. 

Figure 9 displays the module variable_classes which 

contains the classes to describe the XSD document 

explained in the section before. 

 

 
 

Figure 9: Initialization Classes in SLX. 

 

The generated SLX code imports this module and in-

stantiates objects which are described in the XML docu-

ment using the defined classes. Figure 10 illustrates the 

generated SLX source code according to the example 

variable defined in Figure 4. First of all the elements 

with the identifier MILLING_MACHINE_1 and identi-

fier MILLING_MACHINE_2 are created and assigned 

with its element type RESOURCE and its attribute 

OUTPUT. 

Thereby OUTPUT is not a specific SLX attribute of a 

resource. It makes the connection between the generated 

source code and the example in Figure 4 easier. 

The operands (operand_1_1 and operand_1_2) are 

assigned to this element and it is integrated into one 

operation with the operator plus. This operation is a 

component of the first operand of the variable mill-

ing_output_1 which is inserted into the list of variables. 

These defined objects can be used in the source code of 

the simulation model. 

 

//***************************************************************** 
// Module Initialization Classes of Calculation Rules 
//***************************************************************** 
module variable_classes { 
 
 public class Element(string(*) elementID_){ 
  string(50) elementID; 
  string(50) elementType; 
  string(50) attributeID; 
  initial{elementID = elementID_; } 
 } 
 
 public class Operand(string(*) operandID_){ 
  string(50) operandID; 
  pointer(Element) element_; 
  pointer(Operation) operation_; 
  initial{operandID = operandID_; } 
 } 
 
 public class Operation(){ 
  string(50) operator_; 
  pointer(Operand) operand_1_; 
  pointer(Operand) operand_2_;  
 } 
 
 public class Variable(string(*) variableID_){ 
  pointer(Operand) operand_; 
  string(50) variableID; 
  string(100) description; 
  initial{variableID = variableID_; } 
 } 
 
 public class Variables(){ 
  set(Variable) variable_; 
 } 
} 



 
 

Figure 10: Generated SLX-Code for Instantiation. 

 

Calculating and Returning Results 
 
After providing generated source code and data files 

respectively to the simulation model, the structure and 

values of the calculation rules can be used. 

 

 
 

Figure 11: Calculating Rules in AutoMod. 

 

The main target is to enable SEWS to generate flexible 

reports independently from the used simulator. At spe-

cific points of time the variables have to be calculated 

and returned. Such points of time could be the end of 

simulation runs or the emergence of heavy exceptions in 

the material flow system. 

The recursive build and the tree structure of calculation 

rules prove an easy implementation of source code for 

calculating results in the simulation models. Elements 

represent the leaves of this tree structure and define the 

necessary attributes of simulation enitities. Their values 

are detected and used for calculation. Figure 11 illus-

trates an example source code in AutoMod. 

Afterwards variables have to be returned in an adequate 

format. The simplest way is to return the pairing of 

VariableID and the corresponding calculated value. 

This can be done in an XML document which has to be 

generated from the simulation model. Figure 12 demon-

strates a sample XML file which can be created easily 

with the output functions of simulators. This result file 

is readable and analyzable from the framework of the 

SEWS and other applications respectively. 

 

 
 

Figure 12: Result Representation via XML. 

 

And now this article comes full circle. It starts with the 

defining of variables for flexible generation of reports 

and ends with the returning of results. 

 

CONCLUSION AND FUTURE WORK 
 
At the transmission plant Rastatt of the DaimlerChrysler 

AG several branches of production shall be provided 

with a SEWS as an experiment to verify the utilizability, 

benefits and potentials of SEWS in the automotive in-

dustry. The manufacturing process in transmission pro-

duction basically consists of production areas, heat 

treating areas and assembling lines. Production areas 

manufacture important components like gears and 

shafts. These production areas are divided into machin-

ing before and after heat treating. The last step is the 

assembling of manufactured parts (Figure 13). 

 

 
 

Figure 13: Manufacturing Process in Transmission 

Production. 

 

To test the functionalities of SEWS adequate represen-

tatives were chosen. These are the FSG assembly line 

which manufactures the transmission for the Mercedes-

Benz A-class, the hardening stove A28 and the produc-

begin F_calculateRule function 

 set V_Operand_Type to F_GetOperand(Arg_OperandID) 

  

 if (F_isOperation(V_Operand_Type) = true) then 

 begin 

  set V_OperationID to F_getOperation(Arg_OperandID) 

   

  set V_Operator to F_getOperator(V_OperationID) 

   

  set V_OperatorFunction to F_getOperatorFunction(V_Operator) 

   

  set V_OperandID_1 to F_getOperandID(V_OperationID + "_1") 

  set V_OperandID_2 to F_getOperandID(V_OperationID + "_2") 

   

  set V_OperandValue_1 to F_calculateRule(V_OperandID_1) 

  set V_OperandValue_2 to F_calculateRule(V_OperandID_2) 

   

 set V_ReturnValue to  

     F_calculateValue(V_Operator,V_OperandValue_1,V_OperandValue_2) 

   

  return V_ReturnValue 

 end 

 else begin 

  return F_getElementValue(V_OperandID) 

 end 

end 

//*************************************************************** 
// Module Initialization Values of Calculation Rules 
//*************************************************************** 
import "variable_classes.slx" 
 
module variable_values{ 
 
 public class initialization(){ 
  pointer(Element) element_1_1_p; 
  pointer(Element) element_1_2_p; 
 
  pointer(Operand) operand_1_1_p; 
  pointer(Operand) operand_1_2_p; 
 
  pointer(Operation) operation_1_root_p = new Operation(); 
  pointer(Operand) operand_1_root_p; 
 
  pointer(Variable) variable_1_p; 
  pointer(Variables) variables_p = new Variables(); 
 
  initial{ 
   element_1_1_p = new Element("MILLING_MACHINE_1"); 
   element_1_1_p->elementType = "RESOURCE"; 
   element_1_1_p->attributeID = "OUTPUT"; 
   operand_1_1_p = new Operand("operand_1_1"); 
   operand_1_1_p->element_ = element_1_1_p; 
 
   element_1_2_p = new Element("MILLING_MACHINE_2"); 
   element_1_2_p->elementType = "RESOURCE"; 
   element_1_2_p->attributeID = "OUTPUT"; 
   operand_1_2_p = new Operand("operand_1_2"); 
   operand_1_2_p->element_ = element_1_2_p; 
 
   operation_1_root_p->operator_ = "plus"; 
   operation_1_root_p->operand_1_ = operand_1_1_p; 
   operation_1_root_p->operand_2_ = operand_1_2_p; 
 
   operand_1_root_p = new Operand("operand_1"); 
   operand_1_root_p->operation_ = operation_1_root_p; 
 
   variable_1_p = new Variable("milling_output_1"); 
   variable_1_p->description = "utilization of milling machines"; 
   variable_1_p->operand_ = operand_1_root_p; 
 
   place variable_1_p into variables_p->variable_; } 
  }} 
} 

<?xml version="1.0" encoding="UTF-8"?> 
<Results> 
 <Result> 
  <VariableID>milling_output_1</VariableID> 
  <Value>232</Value> 
 </Result> 
 <Result> 
  <VariableID>worker_idle_state_1</VariableID> 
  <Value>0.13</Value> 
 </Result> 
</Results> 



tion control center of the shaft manufacturing for heavy 

duty transmissions.  

Further developments to generate alternatives at the 

case of exceptions in material flow systems are neces-

sary. SEWS have to be provided with a certain intelli-

gence and learning aptitude. For this purpose an effi-

cient systematics has to be located which is functioning 

independently of the supplied material flow system. 
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