
FLEXIBLE GENERATION OF REPORTS FOR SIMULATION-BASED

EARLY WARNING SYSTEMS USING XML

Ingo Hotz

DaimlerChrysler AG

Gaggenau Plant, WG-PZP

Hauptstrasse 107, 76571 Gaggenau, GERMANY

E-mail: ingo.hotz@daimlerchrysler.com

Thomas Schulze

School of Computer Science

University of Magdeburg

Universitätsplatz 1, 39106 Magdeburg, GERMANY

E-mail: tom@iti.cs.uni-magdeburg.de

KEYWORDS

Online-Simulation, Simulation-based Early Warning

Systems (SEWS), XML, XSLT, Flexible Reporting

ABSTRACT

Simulation-Based Early Warning Systems provide op-

portunities to control and analyze material flow systems

by forecasting future system states. For this purpose a

flexible reporting and extracting of simulation results

respectively is essential but not supported by simulation

tools in a standardized and simulator-independent way.

There is a variety of general communication methods to

exchange results with non-simulation applications (e.g.

Simulation-Based Early Warning Systems). Neverthe-

less the data structure and representation have to be

described for every isolated case.

This article presents a solution approach to enable flexi-

ble generation of reports via XML and XSLT. For this

reason an XML schema definition used for defining

variable calculation rules is described and its implemen-

tation in representative simulation tools is pointed up as

well as the link to simulation-based early warning sys-

tems.

INTRODUCTION

Different customer requirements, the rapid change of

available technologies and the bigger flexibility of pro-

duction factors in the automotive industry lead to in-

creasing competition and complexity in process and

product innovation. Appropriate methods to cope with

these challenges are efficient production strategies.

In this context, time is a very important factor. The

sooner future developments are identified, the faster one

can respond to them. Simulation-Based Early Warning

Systems (SEWS) support a proactive control of real

material flow systems. In consequence of real or poten-

tial state changes, proactive control (unlike reactive

control) makes foresighted and target-oriented acting

possible.

The usage of simulation as a part of an early warning

system to control real material flow systems makes

great demands on simulation models and the system

environment. One requirement is that a potential user of

SEWS does not have to parameterize, start and analyze

simulation runs. For this reason the simulation model

has to be embedded invisibly into a SEWS and special

programming constructs are required that allow simula-

tion models to be integrated in a production control or

operating system (Banks 2000).

The main objective of this approach is to support SEWS

with efficient functions to generate reports flexibly and

independently of the used simulator. The following

section will give a short description of SEWS and their

architecture. After that the flexible generation of reports

via variable definition will be discussed. The last sec-

tion explains how simulation models can work with it.

Finally the paper gives a conclusion and an outlook on

future work.

SIMULATION-BASED EARLY WARNING

SYSTEMS

The basic concept of SEWS is not new but not de-

scribed conclusively in literature and consistently im-

plemented in practice. One of the commonly used terms

in this context is online-simulation, which is part of

SEWS to forecast future system states. Generally

online-simulation is the simulation of an existing real

system based on a simulation model of this system. The

simulation model has to be initialized with real data of

the current system state. Results have to be calculated in

an adequately short time (Schulze et al. 2003). There are

a lot of terms and definitions which are related directly

and indirectly with SEWS but it is possible to differen-

tiate them (Hotz and Schulze 2006). The following

section defines and explains the term of SEWS and

introduces the system architecture.

Making SEWS Understandable

Generally early-warning systems are mechanisms de-

ployed to inform persons at risk of imminent danger at

an early stage. The purpose is to enable the user or the

deployer of the early-warning system to prepare for the

danger and act accordingly to mitigate against or avoid

it (Greulich and Barnert 2003).

Simulation models are used to predict the behaviour of

real and complex systems which are stochastically in-

fluenced. Typically simulation models help to analyze

the effects of different action alternatives without im-

plementation and negative effects for the real system.

SEWS combine the functionalities of simulation and

early-warning systems. The simulation-based forecast-

ing of future system states is the significant difference

to classic early-warning systems which are based exclu-

sively on historical and current measuring data.

Recapitulating the following definition of SEWS may

be useful:

“A Simulation-Based Early Warning System is a

mechanism which is based on a simulation model of a

complex real system and points negative effects or posi-

tive potentials out as soon as possible and informs the

user of the complete system conveniently by forecasting

and analyzing different action alternatives.”

The potential users of SEWS are the responsible people

who are commissioned to control the real system. In

practice the acceptance of SEWS is affected by the

capability of detecting exceptional circumstances, the

generation of reasonable action alternatives and the

flexible representation of important variables from

simulation results.

System Architecture of SEWS

In principle the architecture of SEWS includes five

primary components (Hotz and Schulze 2006):

• Datasources:

Relevant system data has to be collected from dif-

ferent data sources. These could be databases of op-

erating systems, production control centers or dif-

ferent production planning systems like enterprise

resource planning or other planning and documenta-

tion databases. Maintenance data and data of finan-

cial controlling systems are also important. Specific

scenarios necessitate collecting data from computer

numeric controls, storage programmable logic con-

trollers for conveyors or machines and OPC-server

directly. There are a lot of approaches to connect

data from real production facilities with simulation

models (Feldmann 2000) and represent simulation

relevant data in XML (Jensen and Reinhardt 2003).

• Framework:

The main functions of the primary component

Framework are data handling, the initialization and

control of simulation models, the gathering and

evaluation of simulation results. Furthermore it has

to support an efficient communication with a

SEWS-user and to generate appropriate action al-

ternatives in the case of exceptions in the material

flow system e.g. machine failures or material tail-

backs.

• Simulation Model(s):

The ability to forecast and proactive control is pro-

vided by simulation models of the real system. A

SEWS should be independent of specific simulation

models or simulators. Some simulators are more

capable because of their performance, their com-

munication abilities and their extensibility, others

are not.

• User and user interface respectively:

The control center user is of utmost importance. He

is supplier of data as well as beneficiary of the sys-

tem. Via a user interface he is able to configure the

different functionalities of the framework depend-

ing on the real system.

• Global XML-Structure and Web Services:

At the evolution of SEWS attention has to be paid

to standardization, extensibility and reusability of

the whole system and its components. XML is a

standardized data exchange format and satisfies

these requirements regarding extensibility and stan-

dardization. Web Services guarantee the reusability

of commonly used functions which can be used by

more then one SEWS. A Web Service is a service

whose functionalities are described in XML and

can be called over the internet and intranet respec-

tively (Graham et al. 2002).

Figure 1 displays the system architecture of SEWS.

Figure 1: System Architecture of SEWS.

The following section describes the flexible report gen-

eration via variable definition.

FLEXIBLE REPORT GENERATION VIA

VARIABLE DEFINITION

Using a variety of simulation tools causes the necessity

of result format standardization. There are a lot of pos-

sible forms and methods to generate reports and results

from simulation runs. If we want to apply a SEWS in-

dependently of the used simulator the report generation,

the representation and the evaluation of simulation re-

sults have to be standardized.

Defining and parametrizing variables via XML are the

method of solution in this article. XML can be used in

different technologies and can be represented in a vari-

ety of display formats. For this reason it is necessary to

describe the processing of XML documents, because a

variety of illustration facilities for XML data is avail-

able e.g. web pages.

The variables are freely configurable by the control

center user of a SEWS. He can flexibly define his own

reporting as requested and thus independence can be

achieved. The simulator and simulation model respec-

tively can process the calculation rules of these vari-

ables and return the results after or during a simulation

run.

First of all the following subsection illustrates the tech-

nology XML. Subsequently the definition of variables

via XML and the generation of source code using XSLT

will be described.

The World is Speaking XML

Recommended by the W3C (W3C 2006) the eXtensible

Markup Language (XML) is a general-purpose markup

language for creating special-purpose markup lan-

guages, capable of describing many different kinds of

data. Derived from the Standard Generalized Markup

Language (SGML), XML plays an important role in

facilitating the sharing of data across different systems,

especially systems connected via the Web.

Markup languages based on XML like MathML

(MathML 2006), XHTML and XSLT are defined in a

formal way and allow programs to modify and validate

documents without prior knowledge of their form. Fol-

lowing points make XML well-suited for data exchange

(McLaughlin 2002, Skulschus 2004, Bates 2003):

• Simultaneously human- and machine-readable. The

support of unicode allows the communication of

almost any information in any human language and

it manifests as plain text files, independently of li-

censes or restrictions.

• The most general computer science data structures

can be represented (records, lists and trees).

• A strict syntax and parsing requirements allow the

parsing algorithms to remain simple, efficient and

consistent.

• The self-documenting format describes structure

and field names as well as specific values. A hier-

archical structure suits to most types of documents.

• The robust, logically-verifiable format is based on

international standards.

• Platform-independent and relatively immune to

changes in technology.

• Extensive experience and software availability

because XML and its predecessor SGML have been

in use since 1986.

An XML document has to be well-formed and valid.

Valid XML documents contain data that conforms to an

XML schema that describes correct data values and

locations. Schema definition formats for XML are the

Document Type Definition (DTD) and the XML Schema

Definition (XSD). XSD is the more powerful successor

of DTD in describing XML languages because of its

rich data typing system that allows more detailed con-

straints on an XML document’s logical structure. Fur-

thermore XSD is based on XML format and can be

processed by ordinary XML tools.

Widely used Application Programming Interfaces

(APIs) for processing XML data are the Document Ob-

ject Model API (DOM) for random-access processing

and the Simple API for XML (SAX) for serial process-

ing. Data binding is another possibility of processing

XML data and makes them available for programming

language data structure. An example for data binding

systems is the Java Architecture for XML Binding

(JAXB).

There exist a lot of approaches to make the advantages

of XML useful for simulation. One approach is to ex-

ploit the features of XML for modelling and simulation

systems. Classes are generated which can be integrated

in the target simulation system and support the user in

constructing and editing models (Röhl and Uhrmacher

2005). Another related approach is to use XML-based

code generators for converting simulation models be-

tween different run-time platforms without manual

changes (Wiedemann 2005).

Usually XML is used for describing and exchanging

data between different systems. Concerning a specific

simulation problem, the relevant data are collected and

represented in XML, so all applications involved in

solving this problem work on the same data structure.

Lee and Luo use XML to represent a machine shop data

model and describe a mechanism for transferring data

between a traditional database and XML files (Lee and

Luo 2005). Further there are ambitions to describe

simulation models formally in a universally valid way

(Reinhardt et al. 2003).

The problem of any approaches is that there is no avail-

able standard XML schema definition for simulation

models and it is utopian that this problem can be solved

in the near future. The reason is complexity in simula-

tion which makes it necessary to have simulation ex-

perts who are able to abstract problems from reality. To

find a matching XML schema definition that supports

every possible simulation problem under the restriction

of necessary abstraction would be the solution of strik-

ing simplicity.

For this reason a global XML schema definition for

SEWS is not designed to describe simulation models

completely. It simply has to support the data manage-

ment. The XML schema for describing variables which

is defined in the following is only a fragment of the

global XML schema definition for SEWS.

Defining Variables with XML

The precondition of flexible generation of reports is the

presentability of variables. Simulation entities (e.g.

loads, resources, workers, order lists, etc. …) own a lot

of attributes depending on the used simulation tool. A

flexible and open structure to describe different variable

definitions and constellations is needed. Furthermore

variables calculability consisting of several different

parameters has to be supported.

An appropriate XML schema definition makes this

approach possible. A variable is defined by recursive

use of the XML node operand. An operand represents

either an element or further operations. At this point the

recursivity starts because an operation consists of two

operands and one operator. An element includes the

following information about the related simulation en-

tity (generally an entity is a representation of real things,

Chen 1976):

• ElementType: Defines the type of simulation entity.

Element Types are resources (e.g. machines),

workers, loads, queues or order lists.

• ElementID: Represents the explicit identification of

a specific simulation entity.

• AttributeID: Specifies the desired attribute. Its

value has to be used for calculation.

Figure 2: XML Schema Definition for Variables.

A variable calculation rule can be represented by a di-

rected root tree (Neumann and Morlock 2002). Oper-

ands which contain an element are the leaves of this

tree.

To clarify this coherences a simple example should be

given. Let a, b, c and d be elements used to calculate the

variable x as follows:

)()(dcbax −∗+= .

This calculation can be displayed in a directed root tree

(Figure 3).

Furthermore an element can contain an absolute term or

whole calculation rules of other variables. For this rea-

son very complex calculation rules are within the scope

of possibility.

Figure 3: Root Tree of Variable x.

Defining variables in this way is not completely new.

The Mathematical Markup Language (MathML) pro-

vides a similar systematic for representing mathematical

expressions, symbols and formulae with the aim to

integrate them into HTML documents. It deals with the

presentation as well as information about the meaning

of formula components.

At this point we have reached the first step of flexible

generation of reports. We are able to define complex

calculation rules of variables. Figure 4 illustrates an

example XML document with two variables (mill-

ing_output_1 and worker_idle_state_1) based on the

following calculation rules:

milling_output_1 =

 RESOURCE�MILLING_MACHINE_1�OUTPUT +

 RESOURCE�MILLING_MACHINE_2�OUTPUT

worker_idle_state_1 =

 WORKER�MILLING_WORKER_1�AVG_IDLE +

 WORKER�MILLING_WORKER_2�AVG_IDLE

Figure 4: Example XML Document of Variables.

These variables are based on known attributes of simu-

lation entities and can be built e.g. with the aid of web

pages (Figure 5). Now these rules have to be made

available for the simulation model.

Figure 5: Defining Calculation Rules via Web Pages.

The idea to solve this problem is either to generate

source code which is useable by the simulation model

directly or to generate data files which can be read from

the simulator and simulation models respectively. The

<Variables>
 <Variable>
 <Operand operand_id="operand_1">
 <Operation>
 <Operator>plus</Operator>
 <Operand operand_id="operand_1_1">
 <Element attributeID="OUTPUT"
 elementID="MILLING_MACHINE_1"
 elementType="RESOURCE"/>
 </Operand>
 <Operand operand_id="operand_1_2">
 <Element attributeID="OUTPUT"
 elementID="MILLING_MACHINE_2"
 elementType="RESOURCE"/>
 </Operand>
 </Operation>
 </Operand>
 <Description>utilization of milling machines</Description>
 <VariableID>milling_output_1</VariableID>
 </Variable>
 <Variable>
 <Operand operand_id="operand_2">
 <Operation>
 <Operator>+</Operator>
 <Operand operand_id="operand_2_1">
 <Element attributeID="AVG_IDLE"
 elementID="MILLING_WORKER_1"
 elementType="WORKER"/>
 </Operand>
 <Operand operand_id="operand_2_2">
 <Element attributeID="AVG_IDLE"
 elementID="MILLING_WORKER_2"
 elementType="WORKER"/>
 </Operand>
 </Operation>
 </Operand>
 <Description>average idle state of workers</Description>
 <VariableID>worker_idle_state_1</VariableID>
 </Variable>
</Variables>

best fitting alternative is depending on the used simula-

tion tool. Anyway at this time XSLT comes into play.

Code Generation with XSLT

The eXtensible Stylesheet Language (XSL) describes

how XML encoded files have to be formatted or trans-

formed. XSL is used in three W3C-recommended lan-

guage specifications (W3C 2006). These languages are

XSL Transformations (XSLT), XSL Formatting Objects

(XSL-FO) and XML Path Language (XPath).

XPath is used to address the parts of an XML document

whereas XSL-FO specifies the visual formatting of

XML documents.

Related to this papers topic the interesting specification

is XSLT. It supports the transformation of XML docu-

ments into other document formats like HTML, RTF,

TeX, plain text or even back into XML with new or

changed values and attributes.

For the transformation two things are necessary. An

XSL document describes the transformation output and

an XSLT processor is doing the actual transformation.

There are different XSLT processor distributions avail-

able. The very most common distribution is Xalan-Java

and can be used from the command line, in an applet, a

servlet or as a module in other programs.

Depending on the used simulator, XML documents can

be transformed into different formats via XSLT

stylesheets (Figure 6).

Figure 6: XSLT Transformation (Burke 2001).

Afterwards the simulator and simulation model respec-

tively uses this data. At the end of simulation runs or at

specific points of time the variables have to be calcu-

lated and returned. The processing of calculation rules is

discussed in the following section.

The attributes of the XML node element is defined in a

common way independently of the used simulator. It

has to be translated into simulator specific attributes.

XSLT stylesheets consist of template rules. During the

XSLT processing the XML documents are processed

according to a fixed algorithm to find XML elements

and nodes respectively that meet certain conditions of

template rules. Inside the template rules, instructions are

processed like sequential instructions, which define the

result document.

Then the generally defined attributes can be interpreted

depending on the target simulator. Figure 7 demon-

strates the stylesheet code for interpreting the element

attributes of the example XML document in Figure 4 for

the use in the Simulator “AutoMod”.

The first template is invoked for every element-node in

the XML document. The XML attributes related to this

node (AttributeID and ElementType) are passed to a

second template which is able to interpret the element

type (in the example stylesheet: resource and worker).

Depending on this element type a third template returns

the simulator-specific attributes in cleartext.

Figure 7: Stylesheet for interpreting element attributes.

The following section describes the generated code and

how it can be used by the simulation models and how

the calculation rules are processed.

MAKE SIMULATION MODELS WORKING

WITH IT

The objective target is to enable simulation models to

calculate desired variables for a flexible reporting. At

the moment one can produce useful output with the aid

of XSLT and XML documents. Thus the next sections

will describe how simulation models can be provided

with this output, how simulation models process this

data and how results can be calculated and returned.

First the communication method will be discussed.

Afterwards the initialization of calculation rules in

simulation models will be described. The explanation of

the actual calculation of results and their representation

will complete this section.

Simulation Model Communication

The described approaches in the preceding sections are

tested with the simulation tools AutoMod and SLX.

AutoMod is a discret event-oriented simulator which is

used in the area of material flow and logistics simula-

tion. The modelling can be done in a graphical user

interface. Complex control routines and workflows are

developable using a specific simulation language.

<xsl:template match="Element" mode="auto_mod_attribute">
 <xsl:call-template name="auto_mod_attribute">
 <xsl:with-param name="attribute_id" select="@attributeID"/>
 <xsl:with-param name="element_type" select="@elementType"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="auto_mod_attribute">
 <xsl:param name="attribute_id"/>
 <xsl:param name="element_type"/>
 <xsl:if test="$element_type='RESOURCE'">
 <xsl:call-template name="amod_resource_attributes">
 <xsl:with-param name="attribute_id" select="$attribute_id"/>
 </xsl:call-template>
 </xsl:if>
 <xsl:if test="$element_type='WORKER'">
 <xsl:call-template name="amod_worker_attributes">
 <xsl:with-param name="attribute_id" select="$attribute_id"/>
 </xsl:call-template>
 </xsl:if>

 …

</xsl:template>

<xsl:template name="amod_resource_attributes">
 <xsl:param name="attribute_id"/>
 <xsl:if test="$attribute_id='OUTPUT'">
 <xsl:text>total loads</xsl:text>
 </xsl:if>
 <xsl:if test="$attribute_id='AVG_OUTPUT'">
 <xsl:text>average loads</xsl:text>
 </xsl:if>
 <xsl:if test="$attribute_id='DOWN_TIME'">
 <xsl:text>average down time</xsl:text>
 </xsl:if>

 …

</xsl:template>

This simulator provides the opportunity to communicate

with other systems based on integrated interfaces (e.g.

ActiveX, OLE, Client/Server) and to read data from

files. Furthermore different graphical import formats

like IGES, VRML and DXF are supported (Chung

2003).

The Simulation Language with eXtensibilities (SLX)

consists of two components. On the one hand the SLX-

Language which includes instructions to simulate dis-

crete processes as well as general instructions like

higher programming languages. On the other hand it

contains general components to develop simulation

systems. SLX is based on a C-like kernel which is aug-

mented with basic functions for event-oriented discrete

simulation which leads to the actual SLX kernel

(Schulze and Henriksen 1998). For this reason almost

all functionality of higher programming languages with

their communication possibilities are available.

There are a variety of potential communication methods

for generated source code. Usually company networks

provide slow transfer rates and should not burden with

network traffic unnecessarily. For this reason network

traffic has to be hold minimal.

Making importable data files available to simulation

models reduces communication costs to the required

amount of data. This data files can be stored on the

same computer the simulation model is running on.

These files will be read or included at the beginning of

simulation runs.

AutoMod simulation models as well as SLX simulation

models have to be compiled. Compared to SLX the

compilation process for bigger models developed in

AutoMod is in the range of minutes. Thus data for simu-

lation models are provided as readable data files. A

model compilation is not necessary. Even the compila-

tion of big SLX simulation models requires less then a

minute. For this reason SLX code can be generated on

the fly and imported as SLX classes. The code genera-

tion is one task of the SEWS framework which controls

the data transfer and the simulation models. Figure 8

displays the flow of actions.

Figure 8: Code Generation depends on the Simulator.

To secure the existence of elements and their attributes,

a validity check of calculation rules is inevitable in all

cases.

The next question is how the application of calculation

rules in AutoMod and SLX can be done. This will be

discussed in the following section.

Initialization of Calculation Rules

The simulator and the simulation model respectively

have to generate the desired variables at the end of

simulation runs or at specific points of time. Prior to this

the calculation rules have to be known. The generated

code or data files may be used for the initialization of

simulation models.

For the use in SLX there have to be defined classes

which represent the structure of calculation rules ana-

logical to the XML schema definition document. This

structure can be allocated with data at the initialization.

Figure 9 displays the module variable_classes which

contains the classes to describe the XSD document

explained in the section before.

Figure 9: Initialization Classes in SLX.

The generated SLX code imports this module and in-

stantiates objects which are described in the XML docu-

ment using the defined classes. Figure 10 illustrates the

generated SLX source code according to the example

variable defined in Figure 4. First of all the elements

with the identifier MILLING_MACHINE_1 and identi-

fier MILLING_MACHINE_2 are created and assigned

with its element type RESOURCE and its attribute

OUTPUT.

Thereby OUTPUT is not a specific SLX attribute of a

resource. It makes the connection between the generated

source code and the example in Figure 4 easier.

The operands (operand_1_1 and operand_1_2) are

assigned to this element and it is integrated into one

operation with the operator plus. This operation is a

component of the first operand of the variable mill-

ing_output_1 which is inserted into the list of variables.

These defined objects can be used in the source code of

the simulation model.

//***
// Module Initialization Classes of Calculation Rules
//***
module variable_classes {

 public class Element(string(*) elementID_){
 string(50) elementID;
 string(50) elementType;
 string(50) attributeID;
 initial{elementID = elementID_; }
 }

 public class Operand(string(*) operandID_){
 string(50) operandID;
 pointer(Element) element_;
 pointer(Operation) operation_;
 initial{operandID = operandID_; }
 }

 public class Operation(){
 string(50) operator_;
 pointer(Operand) operand_1_;
 pointer(Operand) operand_2_;
 }

 public class Variable(string(*) variableID_){
 pointer(Operand) operand_;
 string(50) variableID;
 string(100) description;
 initial{variableID = variableID_; }
 }

 public class Variables(){
 set(Variable) variable_;
 }
}

Figure 10: Generated SLX-Code for Instantiation.

Calculating and Returning Results

After providing generated source code and data files

respectively to the simulation model, the structure and

values of the calculation rules can be used.

Figure 11: Calculating Rules in AutoMod.

The main target is to enable SEWS to generate flexible

reports independently from the used simulator. At spe-

cific points of time the variables have to be calculated

and returned. Such points of time could be the end of

simulation runs or the emergence of heavy exceptions in

the material flow system.

The recursive build and the tree structure of calculation

rules prove an easy implementation of source code for

calculating results in the simulation models. Elements

represent the leaves of this tree structure and define the

necessary attributes of simulation enitities. Their values

are detected and used for calculation. Figure 11 illus-

trates an example source code in AutoMod.

Afterwards variables have to be returned in an adequate

format. The simplest way is to return the pairing of

VariableID and the corresponding calculated value.

This can be done in an XML document which has to be

generated from the simulation model. Figure 12 demon-

strates a sample XML file which can be created easily

with the output functions of simulators. This result file

is readable and analyzable from the framework of the

SEWS and other applications respectively.

Figure 12: Result Representation via XML.

And now this article comes full circle. It starts with the

defining of variables for flexible generation of reports

and ends with the returning of results.

CONCLUSION AND FUTURE WORK

At the transmission plant Rastatt of the DaimlerChrysler

AG several branches of production shall be provided

with a SEWS as an experiment to verify the utilizability,

benefits and potentials of SEWS in the automotive in-

dustry. The manufacturing process in transmission pro-

duction basically consists of production areas, heat

treating areas and assembling lines. Production areas

manufacture important components like gears and

shafts. These production areas are divided into machin-

ing before and after heat treating. The last step is the

assembling of manufactured parts (Figure 13).

Figure 13: Manufacturing Process in Transmission

Production.

To test the functionalities of SEWS adequate represen-

tatives were chosen. These are the FSG assembly line

which manufactures the transmission for the Mercedes-

Benz A-class, the hardening stove A28 and the produc-

begin F_calculateRule function

 set V_Operand_Type to F_GetOperand(Arg_OperandID)

 if (F_isOperation(V_Operand_Type) = true) then

 begin

 set V_OperationID to F_getOperation(Arg_OperandID)

 set V_Operator to F_getOperator(V_OperationID)

 set V_OperatorFunction to F_getOperatorFunction(V_Operator)

 set V_OperandID_1 to F_getOperandID(V_OperationID + "_1")

 set V_OperandID_2 to F_getOperandID(V_OperationID + "_2")

 set V_OperandValue_1 to F_calculateRule(V_OperandID_1)

 set V_OperandValue_2 to F_calculateRule(V_OperandID_2)

 set V_ReturnValue to

 F_calculateValue(V_Operator,V_OperandValue_1,V_OperandValue_2)

 return V_ReturnValue

 end

 else begin

 return F_getElementValue(V_OperandID)

 end

end

//***
// Module Initialization Values of Calculation Rules
//***
import "variable_classes.slx"

module variable_values{

 public class initialization(){
 pointer(Element) element_1_1_p;
 pointer(Element) element_1_2_p;

 pointer(Operand) operand_1_1_p;
 pointer(Operand) operand_1_2_p;

 pointer(Operation) operation_1_root_p = new Operation();
 pointer(Operand) operand_1_root_p;

 pointer(Variable) variable_1_p;
 pointer(Variables) variables_p = new Variables();

 initial{
 element_1_1_p = new Element("MILLING_MACHINE_1");
 element_1_1_p->elementType = "RESOURCE";
 element_1_1_p->attributeID = "OUTPUT";
 operand_1_1_p = new Operand("operand_1_1");
 operand_1_1_p->element_ = element_1_1_p;

 element_1_2_p = new Element("MILLING_MACHINE_2");
 element_1_2_p->elementType = "RESOURCE";
 element_1_2_p->attributeID = "OUTPUT";
 operand_1_2_p = new Operand("operand_1_2");
 operand_1_2_p->element_ = element_1_2_p;

 operation_1_root_p->operator_ = "plus";
 operation_1_root_p->operand_1_ = operand_1_1_p;
 operation_1_root_p->operand_2_ = operand_1_2_p;

 operand_1_root_p = new Operand("operand_1");
 operand_1_root_p->operation_ = operation_1_root_p;

 variable_1_p = new Variable("milling_output_1");
 variable_1_p->description = "utilization of milling machines";
 variable_1_p->operand_ = operand_1_root_p;

 place variable_1_p into variables_p->variable_; }
 }}
}

<?xml version="1.0" encoding="UTF-8"?>
<Results>
 <Result>
 <VariableID>milling_output_1</VariableID>
 <Value>232</Value>
 </Result>
 <Result>
 <VariableID>worker_idle_state_1</VariableID>
 <Value>0.13</Value>
 </Result>
</Results>

tion control center of the shaft manufacturing for heavy

duty transmissions.

Further developments to generate alternatives at the

case of exceptions in material flow systems are neces-

sary. SEWS have to be provided with a certain intelli-

gence and learning aptitude. For this purpose an effi-

cient systematics has to be located which is functioning

independently of the supplied material flow system.

REFERENCES

Banks J. 2000. „Simulation in the Future“. In Proceed-

ings of the 2000 Winter Simulation Conference (Or-

lando, FL, USA, Dec.10-13) IEEE, Picataway, N.J.,

1568-1576.

Bates, C. 2003. “XML in theory and practice”. Wiley,

Chichester.

Burke E.M. 2001. „Java and XSLT: Embedding XML

processing into Java applications“. O’Reilly, Bei-

jing, Köln.

Chen P.P.-S. 1976. “The Entity-Relationship Model –

Toward a Unified View of Data”. In ACM Transac-

tions on Database Systems, ACM-Press Vol. 1, No.

1 (March), 9-36.

Chung, C.A. 2003. “Simulation Modeling Handbook: A

Practical Approach”. CRC Press LLC, Boca Raton.

Feldmann, K. 2000. “Simulationsbasierte Planungssys-

teme für Organisation und Produktion”. Springer,

Berlin.

Graham, S.; Simeonov, S.; Boubez, T.; Davis, D.; Da-

niels, G.; Nakamura Y. and Neyama R. 2002.

“Building Web Services with Java: Making Sense

of XML, SOAP, WSDL and UDDI”. Sams Publis-

hing, Indianapolis.

Greulich, W. and Barnert S. 2003. “Der Brockhaus

Computer und Informationstechnologie”. Der B-

rockhaus.

Hotz, I. and Schulze, T. 2006. „Simulationsbasierte

Frühwarnsysteme – Definition, Anforderungen, Ar-

chitektur“. In Simulation und Visualisierung 2006,

T. Schulze, S. Schlechtweg, V. Hinz (Eds.). SCS

European Publishing House, Erlangen, 63-77.

Jensen, S. and Reinhardt, A. 2003. „Integration indus-

trieller DV-Systeme zur automatischen Modellge-

nerierung in der Getriebeproduktion“. In Simulation

und Visualisierung 2003, T. Schulze, S. Schlecht-

weg and V. Hinz (Eds.). SCS European Publishing

House, Erlangen.

Lee T.Y. and Luo Y. 2005. “Data Exchange for Ma-

chine Shop Simulation”. In Proceedings of the

2005 Winter Simulation Conference (Orlando, FL,

USA, Dec.4-6) IEEE, Picataway, N.J., 1446-1452.

MathML World Wide Web. 2006. MathML (online).

Available via http://www.w3.org/TR/MathML2 (ac-

cessed January 29, 2006).

McLaughlin, B. 2002. “Java and XML data binding”.

O’Reilly, Beijing, Cambridge, Farnham, Köln,

Paris, Sebastopol, Taipei, Tokyo.

Neumann, K. and Morlock M. 2002. “Operations Re-

search”. 2. Aufl. - München, Hanser, Wien.

Reinhardt, A.; Verzano, N. and Jensen, S. 2003. „For-

male Beschreibung von Simulationsmodellen in

XML“. In Simulationstechnik – 17. Symposium in

Magdeburg, Hohmann, R. (Eds.). SCS European

Publishing House, Erlangen, 69-74.

Röhl, M. and Uhrmacher A.M. 2005. “Flexible Integra-

tion of XML into Modeling and Simulation Sys-

tems”. In Proceedings of the 2005 Winter Simula-

tion Conference (Orlando, FL, USA, Dec.4-6)

IEEE, Picataway, N.J., 1813-1820.

Schulze, T.; Hanisch, A.; J. Tolujew, J. and Richter, K.

2003. „Online Simulation of Pedestrian Flow in

Public Buildings“. In Proceedings of the 2003 Win-

ter Simulation Conference (Louisiana, New Or-

leans, USA, Dec.7-10) IEEE, Picataway, N.J.,

1635-1641.

Schulze, T. and Henriksen, J. 1998. „Simulation Needs

SLX: Handbuch zum Simulationssystem SLX“. Ot-

to-von-Guericke Universität Magdeburg, Fakultät

für Informatik.

Skulschus, M. 2004. “XML Schema – Vollständige

Einführung, Grundlagen, Praxis, Referenzen”. Gali-

leo Press, Bonn.

W3C World Wide Web. 2006. XML (online). Available

via http://www.w3.org (accessed January 29, 2006).

Wiedemann, T. 2005. “Simsolution – An Open Simula-

tion Environment Founded on Extreme Multitask-

ing”. In Proceedings of the 2005 Winter Simulation

Conference (Orlando, FL, USA, Dec.4-6) IEEE, Pi-

cataway, N.J., 631-636.

AUTHOR BIOGRAPHIES

THOMAS SCHULZE is a Professor at

the School of Computer Science at the

Otto-von-Guericke-University, Magde-

burg, Germany. He received the Ph.D.

degree in civil engineering in 1979 and his

habil. degree for computer science in 1991

from the University of Magdeburg. His research inter-

ests include modelling methodology, public systems

modelling, manufacturing- and distributed-simulation

with HLA. He is an active member in the ASIM, the

German organization of simulation. His e-mail address

is: tom@iti.cs.uni-magdeburg.de.

INGO HOTZ is working as a Ph.D.

student in the production planning de-

partment of the transmission plant Rastatt,

which belongs to the plant Gaggenau of the

DaimlerChrysler AG. After the university

degree in industrial engineering and

management at the University of Karlsruhe, Germany in

2004 he is preparing his Ph.D. thesis at the University of

Magdeburg. His main tasks are material flow simulation

as well as developing digital planning methods. His e-

mail address is: ingo.hotz@daimlerchrysler.com.

	c0: Proceedings 20th European Conference on Modelling and Simulation
Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006
ISBN 0-9553018-0-7 / ISBN 0-9553018-1-5 (CD)

